skip to Main Content

Addition of time-dependent covariates to a survival model significantly improved predictions for daily risk of hospital death

RATIONAL, AIMS AND OBJECTIVES: The study aims to determine the extent to which the addition of post-admission information via time-dependent covariates improved the ability of a survival model to predict the daily risk of hospital death. METHOD: Using administrative and laboratory data from adult inpatient hospitalizations at our institution between 1 April 2004 and 31 March 2009, we fit both a time-dependent and a time-fixed Cox model for hospital mortality on a randomly chosen 66% of hospitalizations. We compared the predictive performance of these models on the remaining hospitalizations. RESULTS: All comparative measures clearly indicated that the addition of time-dependent covariates improved model discrimination and prominently improved model calibration. The time-dependent model had a significantly higher concordance probability (0.879 versus 0.811) and predicted significantly closer to the number of observed deaths within all risk deciles. Over the first 32 admission days, the integrated discrimination improvement (IDI) and net reclassification improvement (NRI) were consistently above zero (average IDI of +0.0200 and average NRI of 62.7% over the first 32 days). CONCLUSIONS: The addition of time-dependent covariates significantly improved the ability of a survival model to predict a patient’s daily risk of hospital death. Researchers should consider adding time-dependent covariates when seeking to improve the performance of survival models.

Authors: Wong J; Taljaard M; Forster AJ; Escobar GJ; van Walraven C

J Eval Clin Pract. 2013 Apr;19(2):351-7. Epub 2012 Mar 12.

PubMed abstract

Explore all studies and publications

Back To Top