BACKGROUND: Recent research suggests that posttraumatic stress disorder (PTSD) is associated with altered amygdala and hippocampal resting-state functional connectivity (rsFC). However, less research has examined whether Prolonged Exposure (PE), a first line exposure-based treatment for PTSD, has the potential to alter resting state neural networks. METHODS: A total of 24 patients with PTSD and 26 matched trauma-exposed healthy controls (TEHCs) underwent resting-state functional magnetic resonance imaging (fMRI) at baseline. PTSD patients were scanned a second time after completing 10-session PE in which patients narrated a detailed trauma account (imaginal exposure) and confronted trauma reminders (in vivo exposure) to extinguish trauma-related fear responses. TEHC were scanned again following a 10-week waiting period. Seed regions of interest (ROIs) included centromedial amygdala (CMA), basolateral amygdala (BLA), and the hippocampus. RESULTS: Post- versus pretreatment comparisons indicated increased rsFC of the BLA and CMA with the orbitofrontal cortex (OFC), and hippocampus-medial prefrontal cortex (mPFC) among patients with PTSD, but not among TEHC participants. CONCLUSIONS: Enhanced amygdala and hippocampus rsFC with prefrontal cortical regions following PE could underlie improved capacity for inhibition and re-evaluation of threat, and heightened memory encoding and retrieval ability, respectively. These findings encourage further investigation of this circuitry as a therapeutic target in PTSD.
Exposure-based therapy changes amygdala and hippocampus resting-state functional connectivity in patients with posttraumatic stress disorder.
Authors: Zhu X; Suarez-Jimenez B; Lazarov A; Helpman L; Papini S; Lowell A; Durosky A; Lindquist MA; Markowitz JC; Schneier F; Wager TD; Neria Y
Depress Anxiety. 2018 Oct;35(10):974-984. doi: 10.1002/da.22816. Epub 2018 Sep 10.